Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]					
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi					
CRM08	Rev 1.10	EC	24/06/21		

ONLINE CONTINUOUS INTERNAL EVALUATION- 2

Dept:EC	Sem / Div:4 A &B	Sub:Signals and Systems	S Code:18EC45			
Date:26/06/21	Time:9.30-11:00am	Max Marks: 50	Elective:N			
Note: Answer any 2 full questions, choosing one full question from each part.						

_					
Q	N	Questions	Marks	RBT	COs
		PART A			
1	a	Determine whether the following systems represented by input-output relations are Linear, Memory-less, Causal and Stable. (i) $y[n]=nx^2(n)$ ii) $y(t)=\sin(6t)x(t)$	8	L2	C02
	b	Let $x[n]=u[n]-u[n-5]$, be the input signal applied to a Linear and Time-Invariant (LTI) discrete-time system and $h[n]=a^n(u[n]-u[n-7])$, be the impulse response of the system. Obtain the output signal, $y[n]$.	9	L3	CO2
	c	The input signal $x(t) = e^{-t}u(t)$ to a LTI system whose impulse response is given by $h(t) = \begin{cases} 1-t, 0 \le t \le 1\\ 0, otherwise \end{cases}$ Calculate the output $y(t)$.	8	L3	CO2
		OR			
2	a	Following signals represent input and impulse response of a continuous-time Linear and Time-Invariant (LTI): $x(t)=u(t)-u(t-3)$ $h(t)=e^{-2t}[u(t+1)-u(t-1)]$ obtain the output for the applied input.	8	L3	CO2
	b	Derive the expression for convolution sum. Perform Convolution operation on the following signals: x[n]= δ [n+1]- δ [n]+ δ [n-3] and h[n]= δ [n]- δ [n-2] Sketch the resulting signal.	9	L2	CO2
	c	Determine whether the following systems represented by input-output relations are Time-Invariant and Invertible: (i) $y(t)=x(\frac{t}{2})$ ii) $y(t)=x(2t+3)$ iii) $y[n]=nx[n]$	8	L3	CO2
		PART B			
3	a	Show that commutative, distributive and associative laws holds good with respect to convolution operator in continuous-time domain.	10	L2	CO2
	b	Show that the step response of an LTI system is running integral of impulse response.	6	L2	CO2
	c	Obtain the step response for the following systems represented by impulse response: I) $h(t)=e^{- t }$ ii) $h(n)=(\frac{1}{2})^n$ iii) $h(t)=tu(t)$	9	L3	CO2
		OR			
4	a	Determine whether the following systems represented by impulse responses are memory-less, causal and stable : (i) $h[n]=u[n-1]-u[n-5]$ (ii) $h[n]=0.5^{ n }$ (iii) $h(t)=e^{-t}u(-t)$ (iv) $h(t)=u(t-1)$	10	L3	CO2

Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]					
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi					
CRM08	Rev 1.10	EC	24/06/21		

ONLINE CONTINUOUS INTERNAL EVALUATION- 2

bAn LTI system is characterized by the impulse response	6	L3	CO2
$h[n] = \left(\frac{1}{2}\right)^n u[n]$, find the response of the system for the input			
$x[n] = \left(\frac{1}{4}\right)^n u[n] .$			
c State and prove the following properties of Continuous-Time Fourier	9	L2	CO3
Series:(i) Frequency shifting (ii) Time differentiation (iii) Linearity			